

High-Throughput Methane Pyrolysis for Low-Cost, Emissions-Free Hydrogen

Dr. Brad Rupp, PARC Cabot, Modular Chemical, Susteon, Stony Brook University, and Burns Energy Systems

Project Vision

We aim to deliver low cost, emission free hydrogen using a novel condensing liquid metal catalyzed methane pyrolysis reactor that enables modest operating temperatures, high space velocities, and low capital costs

Total project cost:	\$4.2M
Length	42 mo.

The Concept

Zinc condensation catalyzed pyrolysis

Benefits

- High catalytic activity via high surface area
- Integration of vaporization and reaction heats
- Moderate reactor temperatures and pressures
- Simple and effective carbon-metal separation

ARPA-E Methane

Project Objectives

Project Objectives

- Hydrogen productivity
- ► CO₂ emissions
- Carbon market value
- ► Plant (1.5 t/d H₂) economics
- Engineering design for 200 kg/d H₂ pilot plant

Final Project Prototype

- Bench-scale process producing 1 kg/d H₂
- Reactor space velocity > 1,000 h⁻¹
- Single-pass methane conversion > 90%
- Reactor temperature < 1,000 °C</p>
- Carbon separation efficiency > 99 wt% C

 $> 20 \text{ mol/m}^3\text{s}$

< 3.0\$/kg H₂

> 100\$/t

 $< 3 \text{ kg CO}_2/\text{ kg H}_2$

The Team

Brad Rupp Principal Investigator

Mary Louie
Carbon Separation

Jin Ki Hong Process Engineering

Jessy Rivest Project Advisor

Raghubir Gupta
Commercialization
Advisor

Andrew Tong
Bench-Scale Reactor
Development

Vasudev Haribal Process Modeling

Jim Zhou Process Development

The Team

Dane Boysen
Entrepreneur in Residence

Matt Eisaman
Carbon Characterization

David Matheu
Process Development

Experimental Results

- Understanding zinc condensation behavior
- Have shown long term, steady state operation (20 hrs) at moderate conversion (27%)
- Experiment duration limited by carbon removal
- Reached conversions up to 60% so far

ARPA-E Methane

Carbon Characterization

- No thermodynamic limit on zinc-carbon separability
 - < 5 ppm Zn in carbon powders separated from proxy Zn-C mixtures</p>
- Minimal post-reactor separation expected
 - Current lab process produces carbon product with < 1 wt% Zn without postprocessing
 - ► Other metal impurities at < 100 ppm
- Carbon product has potential to be tailored for useful markets

Pyrolysis Carbon Analysis

	Concentration (wt%)					
С	98.3					
0	1.24					
Zn	0.49					
Si	0.006					
S	0.003					
Al	0.002					
Fe	0.002ª					
Cr	0.0006ª					
Ni	0.0004ª					
Cu	0.0002ª					

from the XRF

Signal may be largely/solely instrument background

Bench-Scale Unit - 1 kg/day H₂

Designed Operating Conditions

Temperature, max	°C	1210
Pressure, max	bar	9.3
Zinc mass flow, max	kg/day	4.5
Methane mass flow	kg/day	4.5
Carbon mass flow	kg/day	3
Hydrogen mass flow	kg/day	1

Reactor vessel currently under construction

Techno-Economic Analysis

10,000 kg/day H₂ Plant

TEA shows our process can be cost-competitive compared to incumbent technologies

Challenges and Potential Technical Partnerships

Challenges

- COVID-19 has slowed progress
- Commissioning bench-scale reactor slowed due to complexity, finding fabricator, certification process
- Elevated temperature and pressure process requires care and attention for safe operation

Risk Mitigation

External

 Slowed project spending early due to COVID-19 uncertainty

Project

- Continued basic experiments while fabricating reactor
- Carbon analysis to determine value
- Exploring reactor design improvements for improved thermal efficiency and carbon product recovery

Partnerships

- Yes, we're looking for partners!
- Piloting / scale-up
- Carbon utilization

brupp@parc.com dane.boysen@gmail.com

ARPA-E Methane

T2M / Potential Impact

Impact

- Enables low-cost, low-emission hydrogen source
- Feedstock for cleaner carbon end uses

Current Status

- ► TRL 2-3
- Constructing bench-scale prototype
- Evaluating carbon for potential markets

Enabling Success

- Carbon product biggest driver to economic impact
- Understanding market players and needs crucial to scaling
- Engaged with Phillips 66 to potentially utilize carbon product

Industrial **Advisors**

Database - Commercial Methane Pyrolysis Efforts

OBJECTIVE

Keep up to date on the latest developments in methane pyrolysis

- We gather information on all commercial methane pyrolysis efforts
- Currently collect 13 pieces of information (shown at right)
- Database has 22 efforts documented--with more to come
- Plan to update database every quarter

Data Collected

- 1. Start Year
- 2. Company Name
- 3. Location
- 4. Key People
- 5. Funding / Investment
- 6. Technical Approach
- 7. Catalyst / Activator
- 8. Carbon Product
- 9. Process Temp,°C
- 10.Technology Description
- 11.Commercial Status
- 12.TRL
- 13.Website

SAMPLE ENTRIES

Year Started	Organization Name	Location	Key People	Funding		Technical Approach	Catalyst or Activator	Carbon Product	Technology Description	Commercial Status	TRL	Website
2010	Hazer Group	Nedlands (AUS)	Geoff Ward (CEO) Andy Cornejo (CTO, fdr)	\$116,760,000 (mkt cap) Public (ASX:HZR)	900	Catalytic	Iron Oxide	Graphite (80- 95%C)	HAZER® Process, iron ore catalyst, produces high purity graphite, fluidized bed reactor, 900 C,	2019 - Pilot plant 100 kg/d H2 situated in Kwinana, Western Australia	7	https://hazergroup.com.au/
2012	Monolith Materials	Lincoln NE (USA)	Pete Johnson (fdr), Robert Hanson (CEO, fdr)	\$64,300,000 MHI, Azimuth Capital	2100	Plasma	Thermal Plasma	Carbon Black	Thermal plasmas allowing over 5000°C temperatures – licensed technology from Aker Solutions	2018 - Pilot reactor (2MW) "Seaport" (Redwood City, CA) 2021 - Commercial plant (40 tpd C) "Olive Creek, OC-1" (Hallam, NE)	10	https://monolithmaterials.com/
2012	BASF	Ludwigshafen (DEU)	Andreas Bode (lead) Dieter Flick	public-private	1400	Thermal.	Solid Carbon	Low Grade Carbon	Moving bed of carbon granules with inductive heating	2014 - Bench scale reactor 2016 - Semi-pilot scale reactor	5	https://www.basf.com/global/e n/media/events/2019/basf- research-press; conference.html

THANK YOU!

Brad Rupp, PhD

brupp@parc.com

Palo Alto Research Center 3333 Coyote Hill Rd Palo Alto, CA 94304

